Thursday, September 30, 2010

Membina Pemikiran Geometri Murid


Mempelajari ilmu geometri mendedahkan kita tentang kewujudan alam ini dengan mendalam. Mengajar ilmu geometri pula melatih akal fikiran kita untuk menjana pemikiran yang kritis dan terperinci. Terdapat alasan lain kenapa kita harus belajar manipulasi geometri iaitu minat terhadap geometri sentiasa ada apabila kita memerlukan jawapan tentang peristiwa dan fungsi tentang kejadian alam sejagat.
Ironinya, minat terhadap kepelbagaian bentuk dan objek seperti garisan, bulatan, segi tiga, dan segi empat yang begitu dekat dengan kehidupan manusia secara semulajadi selari dengan fenomena memandu di jalan raya, melihat kestabilan bangunan dan lain-lain lagi sering menjadi asas kepada pengembangan terhadap pengetahuan geometri.
Menurut Van Hiele penyelidikannya yang memulakan pada tahun 1950an, pembangunan teori pemikiran spatial dalam geometri mendorong pemahaman serta kemahiran pelajar dengan arahan-arahan yang menjurus kepada aras-aras pemikiran semulajadi geometri pelajar. Teori beliau mempunyai hieraki aras pemikiran bermula pada usia awal kanak-kanak sehinggalah dewasa yang terdiri dari 3 aras pertama yang merangkumi tempoh normal pembelajaran.
         Aras Pertama adalah Visual di mana tahap ini bermula dengan pemikiran nonverbal. Bentuk dilihat sebagai satu, berbanding daripada pelbagai gabungan bentuk.Pelajar akan menamakan bentuk pada apa yang mereka lihat dan tidak ada penjelasan tentang bentuk tersebut.
         Aras Kedua adalah Diskriptif. Pada tahap ini,pelajar boleh mengenali dan menghuraikan bahagian-bahagian bentuk. Mereka juga perlu membina bahasa yang sesuai untuk mempelajari sesuatu konsep yang baru.Walau bagaimanapun, pada tahap ini pelajar masih tidak dapat mengaitkan turutan logik dan perkaitannya. Sebagai contoh,pelajar tidak memahami bahawa segitiga sama sisi yang mempunyai 3 sisi yang sama panjang juga mempunyai 3 sudut yang sama besar.
         Aras Ketiga adalah Deduktif Formal. Pada tahap ini,pelajar dapat mengaitkan turutan logik bentuk. Mereka mampu melihat bahawa ada perhubungan antara satu sama lain dalam suatu bentuk. Mereka juga mampu mengaplikasi serta menerangkan perhubungan antara bentuk dan seterusnya membuat definisi. Sebagai contoh, mereka boleh memahami kenapa segiempat sama adalah juga tergolong dalam bentuk segiempat . Walau pun begitu,pada tahap ini pelajar masih belum mampu memahami peranan aksiom,definisi,teorem dan alihannya.

Bagi sesetengah pelajar,proses pembelajaran berlaku secara aktif serta berkesan melalui permainan. Arahan simulasi dalam geometri serta aktiviti pengayaan boleh diterapkan di dalam aktiviti bermain seperti meyusun mozek serta blok-blok corak mengikut corak tertentu. Dengan menggunakan alatan-alatan ini, secara tidak langsung, kanak-kanak akan mengenal bentuk – bentuk geometri secara tidak formal. Ini kerana geometri ini merupakan suatu seni yang boleh merangsang pemikiran kanak-kanak. Penyusunan blok dan mozek membolehkan kanak-kanak menyelesaikan masalah – masalah bentuk-bentuk yang dikehendaki. Kanak-kanak digalakkan meneroka dengan bebas bahan-bahan geometri dan membuat penemuan secara sendiri ciri-ciri dan struktur bahan. Sementara mereka bermain, murid-murid boleh dinilai oleh guru melalui pemerhatian secara tidak formal cara murid berfikir.

Seperti contoh, penggunaan tangram boleh diajar sejak dari awal peringkat umur murid. Guru boleh menanyakan beberapa soalan seperti apa yang boleh dilakukan dengan kepingan-kepingan tangram tersebut. Guru perlu menggalakkan murid supaya berkongsi dan bercerita tentang bentuk dan gambar yang mereka bina. Secara tak langsung murid meneroka ciri-ciri bentuk dan perhubungan antaranya.
 Ini seterusnya murid dapat memberi tumpuan terhadap ciri-ciri khusus setiap bentuk tangram tersebut seperti bentuk segiempat sama, segiempat tepat dan juga segitiga.
 
Contohnya, dalam suatu permainan, murid menggunakan beberapa kepingan bentuk segitga untuk membentuk segiempat. Guru boleh menggalakkan murid untuk menggunakan kepingan-kepingan yang lain untuk membentuk sesuatu bentuk yang baru. Melalui aktiviti tersebut murid dapat lebih pemahaman yang lebih spesifik terhadap ciri-ciri bentuk. Murid akan sedar bahawa panjang sisi bentuk tersebut adalah sama dan sesetengahnya adalah separuh daripada bentuk yang lain. Mereka juga dapat menyatakan bahawa setiap sudut bahawa apabila dicantumkan bersama akan membentuk bentuk yang lain.

Seterusnya di peringkat yang lebih tinggi, melalui permainan tangram ini, murid diperkenalkan istilah-istilah baru untuk meneroka dengan lebih lagi ciri-ciri bentuk yang baru. Aktiviti ini menggalakkan murid menggunakan istilah-istilah tersebut dalam percakapan dan penulisan mereka tentang pengalaman yang mereka perolehi. Contohnya, semasa guru menanyakan nama-nama bentuk-bentuk, guru boleh memperkenalkan istilah-istilah lain seperti sama sisi, sudut sama, sudut tepat, simetri dan lain-lain. Sebagai contoh guru boleh menanyakan bentuk apa yang mempunyai sudut tempat, apa ciri yang sama dalam semua segitiga,bentuk apa yang mempunyai sisi yang selari dan lain-lain.

Di peringkat seterusnya, aktivti dan tugasan penyelesaian masalah dapat diterap dengan menggunakan soalan terbuka dan boleh diselesaikan dalma pelbagai cara. Matlamatnya adalah supaya murid dapat menggunakan apa yang telah dipelajari dalam menyelesaikan masalah. Murid-murid boleh diberi tugasan mencabar seperti melukis dan membina bentuk-bentuk yang ditunjukkan oleh guru menggunakan kepingan-kepingan tangram tersebut.

Selain daripada itu, penggunaan blok-blok boleh melatih kanak-kanak untuk berfikir secara kognitif melalui penyesuaian bentuk geometri ini. Penggunaan origami juga dapat memberi peluang kepada murid menyelesaikan masalah-masalah geometri seperti paksi simetri, sudut, persamaan bentuk, bucu dan lain-lain.

Kemahiran penyelesaian masalah geometri juga boleh ditingkatkan melalui internet kerana pada masa kini terdapat pelbagai aktiviti interaktif yang membolehkan murid meneroka dan mempelajari tajuk geometri dengan lebih mendalam dengan rasa seronok.


No comments:

Post a Comment